Fractional integral related to Schrödinger operator on vanishing generalized mixed Morrey spaces

With b belonging to a new BMOθ(ρ) space, L=−△+V is a Schrödinger operator on Rn with nonnegative potential V belonging to the reverse Hölder class RHn/2. The fractional integral operator associated with L is denoted by IβL. We investigate the boundedness of IβL and [b,IβL], which are its commutators with bθ(ρ) on vanishing generalized mixed Morrey spaces VMp→,φα,V related to Schrödinger operation and generalized mixed Morrey spaces Mp→,φα,V. The boundedness of the operator IβL is ensured by finding sufficient conditions on the pair (φ12), which goes from Mp→,φ1α,V to Mq→,φ2α,V, and from VMp→,φ1α,V to VMq→,φ2α,V, ∑i=1n1pi−∑i=1n1qi=β. When b belongs to BMOθ(ρ) and (φ12) satisfies some conditions, we also show that the commutator operator [b,IβL] is bounded from Mp→,φ1α,V to Mq→,φ2α,V and from VMp→,φ1α,V to VMq→,φ2α,V. © 2024 Elsevier B.V., All rights reserved.

Авторы
Guliyev Vagif Sabir 1, 2, 3 , Akbulut Ali 1 , Celik Suleyman 4
Издательство
Springer Science and Business Media Deutschland GmbH
Номер выпуска
1
Язык
Английский
Статус
Опубликовано
Номер
137
Том
2024
Год
2024
Организации
  • 1 Department of Mathematics, Kırşehir Ahi Evran Üniversitesi, Kirsehir, Turkey
  • 2 Institute of Applied Mathematics, Baku State University, Baku, Azerbaijan
  • 3 Department of Mathematics, RUDN University, Moscow, Russian Federation
  • 4 Department of Banking, Firat Üniversitesi, Elazig, Turkey
Ключевые слова
BMO; Commutator; Fractional integral; Schrödinger operator; Vanishing generalized mixed Morrey space
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.