Machine learning methods for modeling the kinetics of combustion in problems of space safety

Combustion is a complex physical and chemical process, which is considered both in the modeling of new propulsion systems with high energy efficiency and sufficient safety, and in the modeling of explosion safety and fire extinguishing problems. Fundamental research of this process is one of the key factors responsible for the safety of current and future space flights. Modeling the behavior of chemically reacting systems is computationally complex problem. It is necessary to take into account many details and processes, such as multicomponent structure, diffusion, turbulence, chemical transformations, etc. The modeling of chemical kinetics is the most computationally complex stage. In this paper, we consider the problem of approximating chemical kinetics for modeling the detonation of a hydrogen-air mixture using neural networks. The dataset for training the neural network were prepared using the principal component analysis from the results of numerical modeling of detonation in a narrow channel. The results of the obtained neural network showed that the presented model is capable of approximating chemical kinetics processes without significant restrictions on the range of pressure, temperature or the choice of the used time step. © 2024 Elsevier B.V., All rights reserved.

Авторы
Mal’Sagov Magomed Yu 1 , Mikhalchenko Elena V. 1 , Karandashev Iakov M. 1, 2 , Stamov Lyuben 1
Журнал
Издательство
Elsevier Science Publishing Company, Inc.
Язык
Английский
Страницы
656-663
Статус
Опубликовано
Том
225
Год
2024
Организации
  • 1 Institute for Systems Analysis of Russian Academy of Sciences, Moscow, Russian Federation
  • 2 RUDN University, Moscow, Russian Federation
Ключевые слова
Chemical kinetics; Combustion modeling; Detonation; Neural networks; Numerical simulation; Principal component analysis
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.