Towards accurate and efficient diagnoses in nephropathology: An AI-based approach for assessing kidney transplant rejection

The Banff classification is useful for diagnosing renal transplant rejection. However, it has limitations due to subjectivity and varying concordance in physicians' assessments. Artificial intelligence (AI) can help standardize research, increase objectivity and accurately quantify morphological characteristics, improving reproducibility in clinical practice. This study aims to develop an AI-based solutions for diagnosing acute kidney transplant rejection by introducing automated evaluation of prognostic morphological patterns. The proposed approach aims to help accurately distinguish borderline changes from rejection. We trained a deep-learning model utilizing a fine-tuned Mask R-CNN architecture which achieved a mean Average Precision value of 0.74 for the segmentation of renal tissue structures. A strong positive nonlinear correlation was found between the measured infiltration areas and fibrosis, indicating the model's potential for assessing these parameters in kidney biopsies. The ROC analysis showed a high predictive ability for distinguishing between ci and i scores based on infiltration area and fibrosis area measurements. The AI model demonstrated high precision in predicting clinical scores which makes it a promising AI assisting tool for pathologists. The application of AI in nephropathology has a potential for advancements, including automated morphometric evaluation, 3D histological models and faster processing to enhance diagnostic accuracy and efficiency. © 2024 Elsevier B.V., All rights reserved.

Авторы
Fayzullin Alexey L. 1, 2 , Ivanova Elena I. 1, 3 , Grinin Victor 4 , Ermilov Dmitry 4 , Solovyeva Svetlana E. 3 , Balyasin Maxim V. 5 , Bakulina Alesia A. 1 , Nikitin P.V. 1 , Valieva Yana M. 1, 2 , Kalinichenko Alina 1 , Arutyunyan Alexander 4 , Lychagin A.V. 6 , Timashev Peter S. 1, 2
Издательство
Elsevier B.V.
Язык
Английский
Страницы
571-582
Статус
Опубликовано
Том
24
Год
2024
Организации
  • 1 Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
  • 2 Sechenov First Moscow State Medical University, Moscow, Russian Federation
  • 3 Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
  • 4 VimpelCom, Moscow, Russian Federation
  • 5 Scientific and Educational Resource Center, RUDN University, Moscow, Russian Federation
  • 6 Department of Trauma, Sechenov First Moscow State Medical University, Moscow, Russian Federation
Ключевые слова
Artificial intelligence; Computational pathology; Digital pathology; Transplant rejection; Whole slide images
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.