Millions of people worldwide suffer from musculoskeletal damage, thus using the largest proportion of rehabilitation services. The limited self-regenerative capacity of bone and cartilage tissues necessitates the development of functional biomaterials. Magnetoactive materials are a promising solution due to clinical safety and deep tissue penetration of magnetic fields (MFs) without attenuation and tissue heating. Herein, electrospun microfibrous scaffolds were developed based on piezoelectric poly(3-hydroxybutyrate) (PHB) and composite magnetic nanofillers [magnetite with graphene oxide (GO) or reduced GO]. The scaffolds’ morphology, structure, mechanical properties, surface potential, and piezoelectric response were systematically investigated. Furthermore, a complex mechanism of enzymatic biodegradation of these scaffolds is proposed that involves (i) a release of polymer crystallites, (ii) crystallization of the amorphous phase, and (iii) dissolution of the amorphous phase. Incorporation of Fe