Monitoring of Heracleum sosnowskyi Manden Using UAV Multisensors: Case Study in Moscow Region, Russia

Detection and mapping of Sosnowsky’s hogweed (HS) using remote sensing data have proven effective, yet challenges remain in identifying, localizing, and eliminating HS in urban districts and regions. Reliable data on HS growth areas are essential for monitoring, eradication, and control measures. Satellite data alone are insufficient for mapping the dynamics of HS distribution. Unmanned aerial vehicles (UAVs) with high-resolution spatial data offer a promising solution for HS detection and mapping. This study aimed to develop a method for detecting and mapping HS growth areas using a proposed algorithm for thematic processing of multispectral aerial imagery data. Multispectral data were collected using a DJI Matrice 200 v2 UAV (Dajiang Innovation Technology Co., Shenzhen, China) and a MicaSense Altum multispectral camera (MicaSense Inc., Seattle, WA, USA). Between 2020 and 2022, 146 sites in the Moscow region of the Russian Federation, covering 304,631 hectares, were monitored. Digital maps of all sites were created, including 19 digital maps (orthophoto, 5 spectral maps, and 13 vegetation indices) for four experimental sites. The collected samples included 1080 points categorized into HS, grass cover, and trees. Student’s t-test showed significant differences in vegetation indices between HS, grass, and trees. A method was developed to determine and map HS-growing areas using the selected vegetation indices NDVI > 0.3, MCARI > 0.76, user index BS1 > 0.10, and spectral channel green > 0.14. This algorithm detected HS in an area of 146.664 hectares. This method can be used to monitor and map the dynamics of HS distribution in the central region of the Russian Federation and to plan the required volume of pesticides for its eradication. © 2024 Elsevier B.V., All rights reserved.

Авторы
Kurbanov Rashid K. 1 , Dalevich Arkady N. 2 , Dorokhov A.S. 1 , Zakharova Natalia I. 1 , Rebouh Nazih Y. 3 , Kucher Dmitry Evgenievich 3 , Litvinov Maksim A. 1 , Ali Abdelraouf M. 3, 4
Журнал
Издательство
Multidisciplinary Digital Publishing Institute (MDPI)
Номер выпуска
10
Язык
Английский
Статус
Опубликовано
Номер
2451
Том
14
Год
2024
Организации
  • 1 Federal Scientific Agroengineering Center VIM, Moscow, Russian Federation
  • 2 Guild of Digital Economy at the Moscow Chamber of Commerce and Industry, Moscow, Russian Federation
  • 3 Department of Management, RUDN University, Moscow, Russian Federation
  • 4 National Authority for Remote Sensing and Space Sciences, Cairo, Egypt
Ключевые слова
AI; remote sensing; Sosnowsky’s hogweed; spectral data; UAVs
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.