GENETIC MODIFICATION OF PRIMARY HUMAN B CELLS TO MODEL THE PROCESS OF B CELL DEVELOPMENT IN GERMINAL CENTERS

The main stages of maturation of antigen-specific B cells occur in the germinal centers of the lymph nodes. During the process of differentiation, a decision is made on which path the B cells will take to develop further. They will either turn into short-lived plasmablasts or memory B cells or plasma cells. The relationship between these processes is very important for the development of a productive humoral immune response. The goal of the work was to create a system that is capable of simulating ex vivo processes occurring in germinal centers. We used primary B cells from human peripheral blood as starting material. B lymphocytes were stimulated in vitro using feeder cells carrying CD40L molecules and recombinant IL-21. Upon IL-21/ CD40L stimulation, B lymphocytes changed their morphology, surface phenotype, and functional activity. After active expansion for 10 days, further cell growth stopped, and after some time they died. To generate stably proliferating B cells, we used lentiviral transduction of IL-21/CD40L stimulated IgM+ B cells. For this purpose, lentivirus preparations were obtained that carried a cassette consisting of the BCL6 and BCL2L1 genes, separated by a sequence encoding the self-cutting peptide P2A, as well as a GFP reporter gene separated from the target genes by an IRES element. The cassette used ensured the synthesis of the Bcl-6 transcription factor and the Bcl-XL protein in target cells. The Bcl-6 repressor prevented B cells from undergoing terminal differentiation and becoming plasma cells, and the Bcl-XL protein had an anti-apoptotic effect. Transduced B cells proliferated for more than a month and maintained a plasmablast phenotype. Forty-two days after the start of stimulation, transduced B cells remained GFP-positive, coexpressed CD27 and CD38 antigens, carried surface CD20 and IgM, intracellular Bcl-6, Bcl-XL and IgM, retained IgM secretion, but remained negative for surface and intracellular IgG. The proven stimulation system will allow us to simulate key aspects of B cell development in germinal centers to study the formation of B cell memory, which will ultimately facilitate the development of effective vaccines. © 2024 Elsevier B.V., All rights reserved.

Авторы
Byazrova Maria G. 1, 2 , Sukhova Maria M. 1, 3 , Mikhailov Artem A. 1, 3 , Prilipov Alexander Gennadievich 1 , Filatov Alexander V. 1, 3
Издательство
Russian Society of Immunology
Номер выпуска
2
Язык
Русский
Страницы
133-138
Статус
Опубликовано
Том
27
Год
2024
Организации
  • 1 State Research Center Institute of Immunology FMBA, Moscow, Russian Federation
  • 2 RUDN University, Moscow, Russian Federation
  • 3 Lomonosov Moscow State University, Moscow, Russian Federation
Ключевые слова
Bcl-6; Bcl-XL; CD40L; IL-21; memory B cells; naive B cells; plasma cells
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.