ON ZEROS AND TAYLOR COEFFICIENTS OF ENTIRE FUNCTION OF LOGARITHMIC GROWTH

In the paper for an important class of entire functions of zero order we find out straight-forward relations between the increasing rate of the sequences of zeroes and the decay rate of the Taylor coefficients. Applying the coefficient characterization of the growth of entire functions and some Tauberian theorems from the convex analysis, we obtain asymptotically sharp estimates relating the zeroes lambda(n), and Hadamard rectified Taylor coefficients (f(n)) overcap for entire functions of the logarithmic growth. In the cases, when the function possesses a regular behavior of some kind, the mentioned estimates become asymptotically sharp formulas. For instance, if an entire function has a Borel regular growth and the point a = 0 is not its Borel exceptional value, then as n -> infinity the asymptotic Identity In |lambda(n)| similar to ln(f(n-1)/f(n)) holds true. The result is true for the functions of perfectly regular logarithmic growth and in the latter case we can additionally state that in |lambda(1) lambda(2) . . . lambda(n)| similar to ln f(n)(-1)as n -> infinity.

Авторы
Издательство
INST MATHEMATICS COMPUTER CENTER RUSSIA
Номер выпуска
2
Язык
Английский
Страницы
15-25
Статус
Опубликовано
Том
16
Год
2024
Организации
  • 1 Moscow Pedag State Univ, Krasnoprudnayastr 14, Moscow 107140, Russia
  • 2 Peoples Friendship Univ Russia RUDN Univ, Nikolskii Math Inst, 6 Miklukho Maklayastr 6, Moscow 117198, Russia
Ключевые слова
entire function; sequence of zeroes; Taylor coefficients; Hadamard rectified Taylor coefficients; logarithmic order; logarithmic type
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.