Queuing Model with Customer Class Movement across Server Groups for Analyzing Virtual Machine Migration in Cloud Computing

The advancement of cloud computing technologies has positioned virtual machine (VM) migration as a critical area of research, essential for optimizing resource management, bolstering fault tolerance, and ensuring uninterrupted service delivery. This paper offers an exhaustive analysis of VM migration processes within cloud infrastructures, examining various migration types, server load assessment methods, VM selection strategies, ideal migration timing, and target server determination criteria. We introduce a queuing theory-based model to scrutinize VM migration dynamics between servers in a cloud environment. By reinterpreting resource-centric migration mechanisms into a task-processing paradigm, we accommodate the stochastic nature of resource demands, characterized by random task arrivals and variable processing times. The model is specifically tailored to scenarios with two servers and three VMs. Through numerical examples, we elucidate several performance metrics: task blocking probability, average tasks processed by VMs, and average tasks managed by servers. Additionally, we examine the influence of task arrival rates and average task duration on these performance measures.

Авторы
Kushchazli A. 1 , Safargalieva A. 1 , Kochetkova I. 1, 2 , Gorshenin A. 2
Журнал
Издательство
MDPI
Номер выпуска
3
Язык
Английский
Статус
Опубликовано
Номер
468
Том
12
Год
2024
Организации
  • 1 RUDN Univ, Inst Comp Sci & Telecommun, 6 Miklukho Maklaya St, Moscow 117198, Russia
  • 2 Russian Acad Sci, Fed Res Ctr Comp Sci & Control, 44-2 Vavilova St, Moscow 119333, Russia
Ключевые слова
cloud computing; virtual machine migration; overloaded server; queuing system; continuous-time Markov chain; blocking probability; virtual machine load; server load
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.