International Journal on Minority and Group Rights. Том 10. 2003. С. 203-220
We consider the problem of one-dimensional symmetric diffusion in the framework of Markov random walks of the Weierstrass type using two-parameter scaling for the transition probability. We construct a solution for the characteristic Lyapunov function as a sum of regular (homogeneous) and singular (nonhomogeneous) solutions and find the conditions for the crossover from normal to anomalous diffusion. © 2016, Pleiades Publishing, Ltd.