Solvability of Some Systems of Integro-differential Equations in Population Dynamics Depending on the Natality and Mortality Rates

We establish the existence of stationary solutions for certain systems of reaction–diffusion-type equations in the corresponding $$H^{2}$$ spaces. Our method relies on the fixed point theorem when the elliptic problem contains second-order differential operators with and without the Fredholm property, which may depend on the outcome of the competition between the natality and the mortality rates involved in the equations of the systems.

Авторы
Vougalter Vitali 1 , Volpert Vitaly 2, 3
Издательство
Springer International Publishing
Номер выпуска
1
Язык
Английский
Страницы
1-22
Статус
Опубликовано
Том
10
Год
2024
Организации
  • 1 University of Toronto
  • 2 University Lyon 1
  • 3 Peoples’ Friendship University of Russia
Ключевые слова
solvability conditions; Non-Fredholm operators; systems of integro-differential equations; stationary solutions; 35R09; 35A01; 35J91; 35K91; mathematics; general
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.