Logical laws for existential monadic second-order sentences with infinite first-order parts

We consider existential monadic second-order sentences ∃X φ(X) about undirected graphs, where ∃X is a finite sequence of monadic quantifiers and φ(X) ∈ +∞ω ω is an infinite first-order formula. We prove that there exists a sentence (in the considered logic) with two monadic variables and two first-order variables such that the probability that it is true on G(n, p) does not converge. Moreover, such an example is also obtained for one monadic variable and three first-order variables. © 2017, Pleiades Publishing, Ltd.

Авторы
Zhukovskii M.E. 1, 2 , Sánchez M.G. 1
Номер выпуска
3
Язык
Английский
Страницы
598-600
Статус
Опубликовано
Том
96
Год
2017
Организации
  • 1 Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow oblast, 141700, Russian Federation
  • 2 RUDN University, Moscow, 117198, Russian Federation
Цитировать
Поделиться

Другие записи