Local solvability and stability for the inverse Sturm-Liouville problem with polynomials in the boundary conditions

In this paper, we for the first time prove local solvability and stability of the inverse Sturm-Liouville problem with complex-valued singular potential and with polynomials of the spectral parameter in the boundary conditions. The proof method is constructive. It is based on the reduction of the inverse problem to a linear equation in the Banach space of bounded infinite sequences. We prove that, under a small perturbation of the spectral data, the main equation of the inverse problem remains uniquely solvable. Furthermore, we derive new reconstruction formulas for obtaining the problem coefficients from the solution of the main equation and get stability estimates for the recovered coefficients.

Авторы
Chitorkin E.E. 1, 2 , Bondarenko N.P. 2, 3, 4
Издательство
John Wiley & Sons Ltd.
Номер выпуска
11
Язык
Английский
Страницы
8881-8903
Статус
Опубликовано
Том
47
Год
2024
Организации
  • 1 Samara National Research University
  • 2 Saratov State University
  • 3 Samara National Research University
  • 4 Peoples' Friendship University of Russia (RUDN University) Moscow Russia
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.