Schemes of Finite Element Method for Solving Multidimensional Boundary Value Problems

We propose new computational schemes and algorithms of the finite element method for solving elliptic multidimensional boundary value problems with variable coefficients at derivatives in a polyhedral d-dimensional domain, aimed at describing collective models of atomic nuclei. The desired solution is sought in the form of an expansion in the basis of piecewise polynomial functions constructed in an analytical form by joining Hermite interpolation polynomials and their derivatives on the boundaries of neighboring finite elements having the form of d-dimensional parallelepipeds. Calculations of the spectrum, quadrupole momentum and electric transitions of standard boundary value problems for the geometric collective model of atomic nuclei are analyzed.

Авторы
Batgerel Balt 1 , Vinitsky S.I. 2, 3 , Chuluunbaatar Ochbadrakh 1, 2, 4 , Buša Jan 2, 5 , Blinkov Y.A. 6 , Gusev A.A. 2, 7 , Deveikis Algirdas 8 , Chuluunbaatar Galmandakh 2, 7 , Ulziibayar Vandandoo 4
Издательство
Plenum Publishers
Номер выпуска
6
Язык
Английский
Страницы
738-755
Статус
Опубликовано
Том
279
Год
2024
Организации
  • 1 Mongolian Academy of Sciences
  • 2 Joint Institute for Nuclear Research
  • 3 Peoples' Friendship University of Russia
  • 4 Mongolian University of Science and Technology
  • 5 Alikhanyan National Science Laboratory
  • 6 Chernyshevsky Saratov National Research State University
  • 7 Dubna State University
  • 8 Vytautas Magnus University
Ключевые слова
general
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.