Liouville nonintegrability of sub-Riemannian problems on free Carnot groups of step 4

One of the main approaches to the study of the Carnot–Carathéodory metrics is the Mitchell–Gromov nilpotent approximation theorem, which reduces the consideration of a neighborhood of a regular point to the study of the left-invariant sub-Riemannian problem on the corresponding Carnot group. A detailed analysis of sub-Riemannian extremals is usually based on the explicit integration of the Hamiltonian system of Pontryagin’s maximum principle. In this paper, the Liouville nonintegrability of this system for left-invariant sub-Riemannian problems on free Carnot groups of step 4 and higher is proved. © 2017, Pleiades Publishing, Ltd.

Авторы
Lokutsievskii L.V. 1, 2 , Sachkov Y.L. 3, 4
Номер выпуска
3
Язык
Английский
Страницы
211-213
Статус
Опубликовано
Том
95
Год
2017
Организации
  • 1 Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, 119991, Russian Federation
  • 2 Mechanics and Mathematics Faculty, Moscow State University, Moscow, 119991, Russian Federation
  • 3 Ailamazyan Program Systems Institute, Russian Academy of Sciences, Yaroslavskaya obl., Pereslavskii raion, s. Ves’kovo, 152021, Russian Federation
  • 4 RUDN University, Moscow, 117198, Russian Federation
Цитировать
Поделиться

Другие записи