Non-uniqueness of signed measure-valued solutions to the continuity equation in presence of a unique flow

We consider the continuity equation partial derivative(t)mu(t) + div(b mu(t)) = 0, where {mu(t)}(t is an element of R) is a measurable family of (possibily signed) Borel measures on R-d and b : R x R-d -> R-d is a bounded Borel vector field (and the equation is understood in the sense of distributions). If the measure-valued solution mu(t) is non-negative, then the following superposition principle holds: mu(t) can be decomposed into a superposition of measures concentrated along the integral curves of b. For smooth b this result follows from the method of characteristics, and in the general case it was established by L. Ambrosio. A partial extension of this result for signed measure-valued solutions mu(t) was obtained in [AB08], where the following problem was proposed: does the superposition principle hold for signed measure-valued solutions in presence of unique flow of homeomorphisms solving the associated ordinary differential equation? We answer to this question in the negative, presenting two counterexamples in which uniqueness of the flow of the vector field holds but one can construct non-trivial signed measure-valued solutions to the continuity equation with zero initial data.

Авторы
Bonicatto P. 1 , Gusev N.A. 2, 3, 4
Издательство
European Mathematical Society Publishing House
Номер выпуска
3
Язык
Английский
Страницы
511-531
Статус
Опубликовано
Том
30
Год
2019
Организации
  • 1 Univ Basel, Dept Math & Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
  • 2 Moscow Inst Phys & Technol, 9 Inst Skiy, Moscow 141700, Russia
  • 3 RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
  • 4 Russian Acad Sci, Steklov Math Inst, 8 Gubkina St, Moscow 119991, Russia
Ключевые слова
Continuity equation; measure-valued solutions; uniqueness; Superposition Principle
Цитировать
Поделиться

Другие записи