О разрушении решения одной $(1+1)$-мерной тепло-электрической модели

Рассматривается тепло-электрическая $(1+1)$-мерная модель нагрева полупроводника в электрическом поле. Для соответствующей начально-краевой задачи доказано существование непродолжаемого во времени классического решения и получены достаточные условия разрушения решения за конечное время.

We consider a $(1+1)$-dimensional thermal-electrical model of semiconductor heating in an electric field. For the corresponding initial-boundary value problem, we prove the existence of a classical solution that cannot be continued in time and obtain sufficient conditions for the blow-up of the solution in a finite time.

Издательство
Федеральное государственное бюджетное учреждение науки Математический институт им. В.А. Стеклова Российской академии наук
Номер выпуска
2
Язык
Русский
Страницы
249-262
Статус
Опубликовано
Том
219
Год
2024
Организации
  • 1 Физический факультет, Московский государственный университет имени М.В. Ломоносова
  • 2 Российский университет дружбы народов
Ключевые слова
nonlinear Sobolev-type equations; Solution blowup; local solvability; nonlinear capacity; blow-up time estimates; нелинейные уравнения соболевского типа; разрушение решения; blow-up; локальная разрешимость; нелинейная емкость; оценки времени разрушения
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.