В статье представлен метод построения векторных полей, фазовые портреты которых имеют конечные множества заданных особых траекторий (предельных циклов, простых и сложных особых точек, сепаратрис) и заданные топологические структуры в ограниченных областях фазовой плоскости. Задача построения таких векторных полей является обобщением ряда известных обратных задач качественной теории обыкновенных дифференциальных уравнений. Предложенный метод её решения расширяет возможности математического моделирования динамических систем с заданными свойствами в различных областях науки и техники.
In this paper, we present a method for constructing vector fields whose phase portraits have finite sets of prescribed special trajectories (limit cycles, simple and complex singular points, separatrices) and prescribed topological structures in limited domains of the phase plane. The problem of constructing such vector fields is a generalization of a number of well-known inverse problems of the qualitative theory of ordinary differential equations. The proposed method for solving it expands the possibilities of mathematical modeling of dynamic systems with prescribed properties in various fields of science and technology.