Application of the Chebyshev collocation method to solve boundary value problems of heat conduction

For one-dimensional inhomogeneous (with respect to the spatial variable) linear parabolic equations, a combined approach is used, dividing the original problem into two subproblems. The first of them is an inhomogeneous one-dimensional Poisson problem with Dirichlet-Robin boundary conditions, the search for a solution of which is based on the Chebyshev collocation method. The method was developed based on previously published algorithms for solving ordinary differential equations, in which the solution is sought in the form of an expansion in Chebyshev polynomials of the 1st kind on Gauss-Lobatto grids, which allows the use of discrete orthogonality of polynomials. This approach turns out to be very economical and stable compared to traditional methods, which often lead to the solution of poorly defined systems of linear algebraic equations. In the described approach, the successful use of integration matrices allows complete elimination of the need to deal with ill-conditioned matrices. The second, homogeneous problem of thermal conductivity is solved by the method of separation of variables. In this case, finding the expansion coefficients of the desired solution in the complete set of solutions to the corresponding Sturm-Liouville problem is reduced to calculating integrals of known functions. A simple technique for constructing Chebyshev interpolants of integrands allows to calculate the integrals by summing interpolation coefficients.

Для одномерных неоднородных (по пространственной переменной) линейных параболических уравнений используется комбинированный подход, разбивающий исходную задачу на две подзадачи. Первая из них - неоднородная одномерная задача Пуассона с граничными условиями Дирихле-Робена, поиск решения которой основан на методе чебышевской коллокации. Метод разработан на основе ранее опубликованных алгоритмов решения обыкновенных дифференциальных уравнений, в которых решение ищется в виде разложения по полиномам Чебышева 1-го рода на сетках Гаусса-Лобатто, что позволяет использовать дискретную ортогональность полиномов. Такой подход оказывается весьма экономичным и стабильным по сравнению с традиционными методами, приводящими к решению часто плохо определенных систем линейных алгебраических уравнений. В описываемом подходе удачное применение матриц интегрирования позволяет вообще избавиться от необходимости работы с плохо обусловленными матрицами. Вторая, однородная задача теплопроводности решается методом разделения переменных. При этом отыскание коэффициентов разложения искомого решения по полному набору решений соответствующей задачи Штурма-Лиувилля сводится к вычислению интегралов от известных функций. Простая методика построения чебышевских интерполянтов подынтегральных функций позволяет вычислять интегралы суммированием интерполяционных коэффициентов.

Издательство
Российский университет дружбы народов им. П. Лумумбы
Номер выпуска
1
Язык
Английский
Страницы
74-85
Статус
Опубликовано
Том
32
Год
2024
Организации
  • 1 RUDN University
  • 2 Joint Institute for Nuclear Research
Ключевые слова
Initial boundary problems; pseudo spectral collocation method; chebyshev polynomials; Gauss-Lobatto sets; numerical stability; separation of variables; начально-краевые задачи; псевдоспектральный метод коллокации; полиномы Чебышева; множества Гаусса-Лобатто; численная устойчивость; разделение переменных
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.