On a Reconstruction Procedure for Special Spherically Symmetric Metrics in the Scalar-Einstein–Gauss–Bonnet Model: the Schwarzschild Metric Test

The 4D gravitational model with a real scalar field $\varphi$, Einstein and Gauss–Bonnet terms is considered. The action contains the potential $U(\varphi)$ and the Gauss–Bonnet coupling function $f(\varphi)$. For a special static spherically symmetric metric $ds^{2}=(A(u))^{-1}du^{2}-A(u)dt^{2}+u^{2}d\Omega^{2}$, with $A(u)>0$ ($u>0$ is a radial coordinate), we verify the so-called reconstruction procedure suggested by Nojiri and Nashed. This procedure presents certain implicit relations for $U(\varphi)$ and $f(\varphi)$ which lead to exact solutions to the equations of motion for a given metric governed by $A(u)$. We confirm that all relations in the approach of Nojiri and Nashed for $f(\varphi(u))$ and $\varphi(u)$ are correct, but the relation for $U(\varphi(u))$ contains a typo which is eliminated in this paper. Here we apply the procedure to the (external) Schwarzschild metric with the gravitational radius $2\mu$ and $u>2\mu$. Using the “no-ghost” restriction (i.e., reality of $\varphi(u)$), we find two families of $(U(\varphi),f(\varphi))$. The first one gives us the Schwarzschild metric defined for $u>3\mu$, while the second one describes the Schwarzschild metric defined for $2\mu

Авторы
Издательство
Pleiades Publishing, Ltd.
Номер выпуска
3
Язык
Английский
Страницы
344-352
Статус
Опубликовано
Том
30
Год
2024
Организации
  • 1 Peoples’ Friendship University of Russia (RUDN University)
  • 2 Center for Gravitation and Fundamental Metrology, VNIIMS
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.