Extension of the Tricomi problem for a loaded parabolic–hyperbolic equation with a characteristic line of change of type

In this work, we investigate a generalization of the Tricomi problem for a loaded mixed-type equation with the Riemann–Liouville fractional differential operator. By using the method of integral equations, a unique solvability of the formulated problem given in piecewise non-parallel characteristics is proven. © 2022 John Wiley & Sons, Ltd.

Авторы
Baltaeva U. 2, 1 , Agarwal P. 4, 3, 5 , Momani S. 6, 4
Сборник материалов конференции
Издательство
John Wiley and Sons Ltd
Язык
Английский
Статус
Опубликовано
Год
2022
Организации
  • 1 Khorezm Mamun Academy, Khiva, Uzbekistan
  • 2 Department of Applied Mathematics, Urgench State University, Urgench, Uzbekistan
  • 3 Applied Non-Liner Science Lab, Department of Mathematics, Anand International College of Engineering, Jaipur, India
  • 4 Nonlinear Dynamics Research Center (NDRC), Ajman University, Ajman, United Arab Emirates
  • 5 Peoples Friendship University of Russia (RUDN University), Moscow, Russian Federation
  • 6 Department of Mathematics, The University of Jordan, Amman, Jordan
Ключевые слова
boundary value problems; equations of mixed type; gluing conditions; integral equation; Riemann–Liouville fractional derivative
Цитировать
Поделиться

Другие записи