Mobile smart helmet for brain stroke early detection through neural network-based signals analysis

The treatments for brain stroke are strongly timedependent. The medical literature highlights the need of a quick diagnosis in order to guarantee the most effective therapy. An important target for strokes is trying to achieve a Door-to-Needle (DTN) time of less than 60 minutes, which is called Golden Hour [1]. This paper proposes a mobile Smart Helmet (SH) thought to be worn by a patient when the first aid medical team arrives and the aim is to efficiently recognize and detect a brain stroke, on site. While similar solutions in the literature employ the (usually computationally heavy) electromagnetic field inversion problem and image analysis, the proposal of this paper is an NN-based SH. It uses signal analysis to recognize the presence of a stroke with a limited computational burden. In the reported preliminary experiments, carried out via simulations, we have employed a MultiLayer Perceptron (MLP) model that implements a 4-layer NN. Numerical results show that proposed signal analysis, applied to a single brain model, is able to efficiently detect the stroke presence with an accuracy around 90%.

Авторы
Bisio I. 1, 2 , Fedeli A. 1 , Lavagetto F. 1 , Pastorino M. 1 , Randazzo A. 1 , Sciarrone A. 1 , Tavanti E. 1
Сборник материалов конференции
Издательство
Institute of Electrical and Electronics Engineers Inc.
Язык
Английский
Страницы
1-6
Статус
Опубликовано
Год
2018
Организации
  • 1 Department of Electrical|Electronic|Telecommunications Engineering|and Naval Architecture|University of Genoa
  • 2 Peoples' Friendship University of Russia|RUDN University
Цитировать
Поделиться

Другие записи

Аватков В.А., Апанович М.Ю., Борзова А.Ю., Бордачев Т.В., Винокуров В.И., Волохов В.И., Воробьев С.В., Гуменский А.В., Иванченко В.С., Каширина Т.В., Матвеев О.В., Окунев И.Ю., Поплетеева Г.А., Сапронова М.А., Свешникова Ю.В., Фененко А.В., Феофанов К.А., Цветов П.Ю., Школярская Т.И., Штоль В.В. ...
Общество с ограниченной ответственностью Издательско-торговая корпорация "Дашков и К". 2018. 411 с.