Разрушение и глобальная разрешимость в классическом смысле задачи Коши для формально гиперболического уравнения с некоэрцитивным источником

В работе рассмотрена абстрактная задача Коши с нелинейными операторными коэффициентами. Доказано существование единственного непродолжаемого классического решения этой задачи Коши. При некоторых достаточных условиях, близких к необходимым, получены условия разрушения решения за конечное время, оценки сверху и снизу на время разрушения, а также при некоторых достаточных условиях, близких к необходимым, получен результат о существовании глобального во времени решения вне зависимости от величины начальных функций.Библиография: 41 наименование.

We consider an abstract Cauchy problem with non-linear operator coefficients and prove the existence of a unique non-extendable classical solution. Under certain sufficient close-to-necessary conditions, we obtain finite-time blow-up conditions and upper and lower bounds for the blow-up time. Moreover, under certain sufficient close-to-necessary conditions, we obtain a result on the existence of a global-in-time solution independently of the size of the initial functions.

Авторы
Издательство
Федеральное государственное бюджетное учреждение науки Математический институт им. В.А. Стеклова Российской академии наук
Номер выпуска
5
Язык
Русский
Страницы
119-150
Статус
Опубликовано
Том
84
Год
2020
Организации
  • 1 Московский государственный университет имени М. В. Ломоносова
  • 2 Российский университет дружбы народов
Ключевые слова
Non-linear Sobolev-type equations; local solubility; nonlinear capacity; bounds for the blow-up time; нелинейные уравнения соболевского типа; разрушение; blow-up; локальная разрешимость; нелинейная емкость; оценки времени разрушения
Цитировать
Поделиться

Другие записи